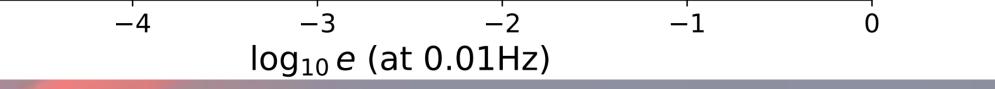

Gravitational Wave Archival Search **Unveil Stellar-mass Binary Black Hole Formation Using Eccentricity** Han Wang (王晗)^{1,*}, Ian Harry², Alexander Nitz^{3,4}, Yi-Ming Hu (胡一鸣)¹ arXiv: 2304.10340


A sMBBH formed by the **co-evolution**

log ₁₀ e (at 1Hz)							
-7	-6	-5	-4	-3	-2 -1	. 0	
3-body inte	raction / In AC	GN XX	XXXX	\times \times \setminus \setminus		- Samsing2022_b	
				\times		- Zevin2019_c	
		$/ \times \times \times$	$\times \times \times \times \times$	\times \setminus \setminus		- Rodriguez2018_d	
				\sim	┝━┥	- Antonini2017	
			XXXX	$\times \times \setminus \mathbb{H}$	- +	- Samsing2022_a	
				✓┝┳╼┯┥	$\setminus \setminus$	- Antonini2012	
Inside clust	er / / /		$\times \times \times \times$		$\langle \rangle$	- Rodriguez2018_c	
			╱╱╵ ╲╱╺ ╲		$\langle \rangle \rangle$	- Zevin2019_b	
		/XXX	X	\times	$\langle \ \rangle$	- Samsing2018_b	
Outside clu	ster			\times \setminus \setminus	\setminus	- Rodriguez2018_b	
			\rightarrow \times \times \times	\times	$\langle \rangle \rangle$	- Rodriguez2016	
						- Samsing2018_a	
	////			ed LIGO + V		- Zevin2019_a	
	////		Cosmic	Explorer ×2	2	- Breivik2016_c	
In field		-	Einsteir —	n Tel <mark>e</mark> scop <mark>e</mark>	×2	- Kowalska2011	
			— TianQir	n / LISA (our	work)	- Rodriguez2018_a	
		\mathcal{A} \mathcal{X}		n / LISA (our		- Breivik2016_b	
						- Breivik2016_a	

sMBBHs formed by **dynamical**

process from an isolated pair of massive stars in (galactic) fields, whose orbit is expected to be almost circular

The orbital eccentricity of a stellar-mass binary black hole (sMBBH) system can be a key probe to unveil its origin

interaction in a dense environment like globular clusters, which are expected to have non-negligible eccentricities

Space-based Detection

-5

- Space-based gravitational wave (GW) detectors like TianQin and LISA will be launched in the next decade
- Longer baselines allow them observe lower-frequency GWs, preserve physical characteristics of sMBBHs like eccentricity from their long early inspirals
- $\mathcal{O}(10)$ sMBBHs with signal-to-noise ratio (SNR) $\rho > 8$ are expected to be detected every year
- Hard to accumulate high SNR though long observation
- Matched filtering as a detection technique require unreasonable computational cost for years of observation

Ground-based Detection

- Next-generation ground-based detectors like Cosmic Explorer and Einstein Telescope observe sMBBHs with high SNR: $O(10^{2-3})$
- Measure most of the physical parameters with high precision, e.g. uncertainty of chirp mass $\Delta M \sim 10^{-6}$
- However, high sensitive frequency range leads to a short observation time (around the merger)
- GW emission circularizes binary's orbit
- Information of how eccentricity evolves will be easily lost in data of ground detectors

Multiband Detection via Archival Search: "Embrace Both Sides"

- A search of archival data from space detectors, triggered by detection with ground counterparts
- Most of the parameters are constrained by ground, so that we can focus on only chirp mass and eccentricity that space can improve better

sbank: Stochastic

Template Bank Generation

• Matched filtering method requires a suitable set of waveform filters, or "template bank"

	Parameter space	GW150914-like	GW190521-like			
TianQin	$e_{\rm i} \in [0, 0.1]$	117202	49943			
	$\mathcal{M} \in \mathcal{M}_0 \pm 10\sigma_{\mathcal{M}}$	3034	4250			
LISA	$e_{\rm i} \in [0, 0.1]$	100403	44867			
	$\mathcal{M} \in \mathcal{M}_0 \pm 10\sigma_{\mathcal{M}}$	2070	3088			

Conclusions

• We constructed the first template bank for an archival search that includes eccentricity Including eccentricity would enlarge the bank size by ~ $\mathcal{O}(10^5)$, which brings additional

- We made it also work for space detectors, by adding their noises and responses
- And the eccentric GW waveform, by adding the impact of **eccentric** harmonics for the responses

computational challenges

• Efficient algorithms needed

Non-eccentric banks will provide a significant

systematic bias when $e_i \gtrsim 5 \times 10^{-4}$

• Which suggests the capability of space

detectors for distinguishing sMBBHs formed by different channels

es 1. Liu, et al. PRD 101.10 (2020): 103027 2. Moore, et al. MNRAS: Letters, 2019, 488(1): L94-L98 3. Wong, et al. PRL 121.25 (2018): 251102 efe 4. Ewing, et al. PRD 103.2 (2021): 023025 5. Sesana. PRL 116.23 (2016): 231102 Ř

()gwastro/sbank

* Email: wangh657@mail2.sysu.edu.cn

1. TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Sun Yat-sen University, Zhuhai, China. 2. University of Portsmouth, Portsmouth, United Kingdom. 3. Department of Physics, Syracuse University, Syracuse, USA. 4. Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany.